China Good quality Highly-Efficient Swl Worm Gear Screw Elevator for Energy-Saving Operations worm and wheel gear

Product Description

 

Product Model SWL2.5, SWL5, SWL10, SWL15, SWL20, SWL25, SWL35, SWL50, SWL100, SWL120
Product Description Basic lifting component, compact structure, small size, light weight, no noise, safe and convenient, flexible use, high reliability, wide power source, multiple supporting functions, long service life
Usage Single or combined use, can accurately control the adjustment of lifting or pushing height according to a certain program, can be directly driven by motor or other power, can also be manual
Lifting Efficiency and Load Capacity Special and advanced technology has been developed to improve the overall performance of the jack
Structural Type Type 1 – Screw moves axially; Type 2 – Screw rotates, nut moves axially
Assembly Type Type A – Screw/nut moves upwards; Type B – Screw/nut moves downwards
Screw Head Type Type 1 structure screw head: Type I (cylindrical), Type II (flange), Type III (threaded), Type IV (flat head); Type 2 structure screw head: Type I (cylindrical), Type III (threaded)
Transmission Ratio Ordinary speed ratio (P), slow speed ratio (M), medium speed ratio (F) can be customized according to user requirements
Lifting Load Capacity 2.5kN, 5kN, 10kN, 15kN, 20kN, 25kN, 35kN, 50kN, 100kN, 120kN
Screw Protection Type 1 structure: basic type (no protection), anti-rotation type (F), with protective cover (Z), anti-rotation and protective cover (FZ); Type 2 structure: basic type (no protection)

Product description: SWL series worm gear screw lift is a basic lifting component with many advantages such as compact structure, small volume, light weight, no noise, safety and convenience, flexible use, high reliability, wide power source, many supporting functions and long service life. It can be used singly or in combination, can adjust the height of lifting or advancing accurately according to certain procedures, and can be driven directly by electric motor or other power, or manually. In order to improve the efficiency and carrying capacity of SWL series worm gear screw lift, special and advanced technology is developed to improve the comprehensive performance of the lift to meet the requirements of the majority of customers. SWL series worm gear screw lift has different structure types and assembly types, and the lifting height can be customized according to the user’s requirements.

RFQ

Q:What information should I tell you to confirm speed reducer?

A: Model/Size, Transmission Ratio, Shaft directions & Order quantity.

 

Q:What if I don’t know which gear reducer I need?

A:Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.

 

Q:What should I provide if I want to order NON-STANDERD speed reducers?

A: Drafts, Dimensions, Pictures and samples if possible.

 

Q:What is the MOQ?

A: It is OK for 1 or small pieces trial order for quality testing.

 

Q:How long should I wait for the feedback after I send the inquiry?

A: Within 6 hours

 

Q:What is the payment term?

A:You can pay via T/T(30% in advance+70% before delivery), L/C ,West Union etc
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Nonstandard
Application: Electric Cars, Motorcycle, Marine, Agricultural Machinery, Car
Spiral Line: Right-Handed Rotation
Head: Single Head
Reference Surface: Toroidal Surface
Type: ZK Worm
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

gear pump

How does a gear pump handle variations in fluid viscosity?

A gear pump is capable of handling variations in fluid viscosity effectively. Here’s a detailed explanation:

1. Positive Displacement Operation:

One of the key features of a gear pump is its positive displacement operation. Regardless of the fluid’s viscosity, the pump delivers a consistent flow rate with each revolution of the gears. The pump traps and displaces a fixed volume of fluid with each rotation, ensuring that the same amount of fluid is moved regardless of changes in viscosity. This positive displacement action allows the gear pump to handle variations in fluid viscosity and maintain accurate and consistent fluid delivery.

2. Viscosity Range:

Gear pumps are designed to handle fluids with a wide range of viscosities. They can effectively handle low-viscosity liquids as well as highly viscous fluids. The pump’s positive displacement mechanism ensures that the fluid is moved at a consistent rate, regardless of its viscosity. This makes gear pumps versatile and suitable for various applications where fluids of different viscosities need to be pumped.

3. Self-Priming Capability:

Gear pumps have a self-priming capability, which means they can draw fluid into the pump without the need for additional priming mechanisms. This self-priming feature allows gear pumps to handle fluids of varying viscosities, including thicker or more viscous fluids that may be difficult to pump with other types of pumps. The gears create a vacuum effect that draws the fluid into the pump, enabling efficient operation even with varying viscosities.

4. Temperature Considerations:

Fluid viscosity can be affected by temperature variations. Gear pumps are designed to handle a wide range of temperatures, allowing them to accommodate changes in fluid viscosity due to temperature fluctuations. It’s important to consider the temperature limits specified by the pump manufacturer to ensure optimal performance and prevent any adverse effects on the pump or the pumped fluid.

5. Material Selection:

The choice of materials used in the construction of gear pumps can also contribute to their ability to handle variations in fluid viscosity. The materials should be selected based on the compatibility with the range of viscosities and potential chemical properties of the fluids being pumped. Proper material selection helps ensure that the pump can effectively handle the fluid without significant variations in flow rate or delivery accuracy.

In summary, gear pumps handle variations in fluid viscosity through their positive displacement operation, designed viscosity range, self-priming capability, consideration of temperature effects, and appropriate material selection. These features make gear pumps versatile and reliable for pumping fluids with different viscosities in various applications.

gear pump

What is the significance of gear pump size and construction materials?

The size and construction materials of a gear pump play a significant role in its performance, durability, and suitability for specific applications. Here’s a detailed explanation:

1. Size:

The size of a gear pump refers to its physical dimensions, including the overall dimensions, shaft diameter, and gear dimensions. The size of a gear pump is important for the following reasons:

  • Flow Rate and Pressure: The size of the pump affects its flow rate and pressure capabilities. Larger gear pumps generally have higher flow rates and can handle higher pressures, while smaller gear pumps are suitable for lower flow rate and pressure requirements. Selecting the appropriate pump size ensures that it can meet the specific demands of the application.
  • Space Constraints: The physical size of the pump is crucial when space is limited. In compact installations or applications with restricted space, smaller gear pumps are preferred to optimize the use of available space.
  • System Integration: The size of the gear pump needs to align with the overall system design and integration. It should fit seamlessly into the system, considering factors such as mounting options, piping connections, and available space for maintenance and repairs.

2. Construction Materials:

The choice of construction materials for a gear pump is important for several reasons:

  • Chemical Compatibility: Different fluids have varying chemical properties, and certain fluids may be corrosive or reactive with certain materials. Selecting appropriate construction materials ensures compatibility with the fluid being pumped, preventing chemical reactions, degradation, or contamination of the fluid and the pump itself.
  • Mechanical Strength: Construction materials determine the mechanical strength and durability of the pump. The materials should be able to withstand the operating conditions, including pressure, temperature, and mechanical stresses, without deformation, fatigue, or failure. Common materials used for gear pump construction include cast iron, stainless steel, bronze, and specialized alloys.
  • Viscosity Handling: The construction materials can impact the pump’s ability to handle fluids with different viscosities. Some materials may have a lower resistance to wear or may experience higher friction with viscous fluids. The materials should be selected to ensure efficient operation and minimize the risk of pump damage or reduced performance when handling fluids of varying viscosities.
  • Hygienic Requirements: In industries such as food and pharmaceuticals, where strict hygienic standards must be maintained, gear pumps can be constructed using materials that comply with sanitary guidelines. These materials are easy to clean, resistant to contamination, and meet specific regulatory requirements.

3. Application Considerations:

When selecting the size and construction materials for a gear pump, it is important to consider the specific requirements of the application. Factors such as desired flow rates, pressure ranges, fluid properties, temperature conditions, and environmental factors should be taken into account. Proper sizing and material selection ensure that the gear pump can operate efficiently, reliably, and safely in the intended application.

In summary, the size and construction materials of a gear pump significantly impact its performance, durability, and suitability for specific applications. Proper sizing ensures that the pump can meet flow rate and pressure requirements, fit into the available space, and integrate well into the system. The choice of construction materials ensures chemical compatibility, mechanical strength, viscosity handling, and compliance with application-specific requirements. Considering these factors is crucial for selecting the right gear pump for optimal performance and longevity.

gear pump

What is the purpose of using a gear pump in various industries?

The use of gear pumps in various industries serves several purposes. Here’s a detailed explanation:

1. Fluid Transfer:

One of the primary purposes of gear pumps is to transfer fluids from one location to another within industrial processes. These pumps are capable of handling a wide range of fluids, including liquids of different viscosities, oils, fuels, chemicals, and even abrasive or corrosive substances. Gear pumps provide a reliable and efficient means of moving fluids between different components or stages of a process.

2. Positive Displacement:

Gear pumps are positive displacement pumps, which means they deliver a fixed volume of fluid for each revolution of the gears. This characteristic makes them suitable for applications that require precise flow control. Industries often rely on gear pumps when accurate and consistent flow rates are essential, such as in metering applications or dosing systems.

3. Lubrication Systems:

Gear pumps are commonly used in lubrication systems to circulate lubricants and ensure proper lubrication of machinery components. These pumps help distribute lubricants, such as oil or grease, to critical areas that require lubrication, such as bearings, gears, and other moving parts. They play a crucial role in maintaining equipment performance, reducing friction, and preventing premature wear and failure.

4. Hydraulic Systems:

Hydraulic systems in industries rely on gear pumps for generating hydraulic power. Gear pumps are used to pressurize hydraulic fluids, which are then used to transmit force and motion in various industrial machinery and equipment. Gear pumps provide the necessary hydraulic pressure to operate hydraulic cylinders, motors, and other components, enabling precise control and efficient power transmission.

5. Fuel Transfer:

Gear pumps are widely employed in fuel transfer applications across industries. They are utilized to transfer fuels, such as gasoline, diesel, or aviation fuel, from storage tanks to vehicles, aircraft, or other fuel-consuming equipment. Gear pumps provide a reliable and consistent flow of fuel, ensuring efficient fuel delivery and preventing issues such as fuel starvation or overflows.

6. Chemical Processing:

In chemical processing industries, gear pumps are utilized for transferring various chemicals and fluids involved in manufacturing processes. These pumps are capable of handling corrosive or aggressive chemicals, making them suitable for applications that involve the transfer of acids, solvents, resins, and other chemical substances.

7. Metering and Dosing:

Gear pumps are commonly used in metering and dosing applications, where precise and controlled fluid delivery is required. Industries such as pharmaceuticals, food and beverage, and water treatment rely on gear pumps to accurately dispense specific volumes of liquids or additives. These pumps offer high accuracy, repeatability, and reliability in delivering precise amounts of fluids for various processes.

8. Industrial Processes:

Gear pumps find applications in a wide range of industrial processes, including printing, packaging, paint manufacturing, polymer production, and many others. They are used for tasks such as ink circulation, adhesive application, paint mixing and dispensing, polymer extrusion, and more. Gear pumps provide the necessary fluid handling capabilities to ensure smooth and efficient operation of these processes.

Overall, the purpose of using gear pumps in various industries is to facilitate fluid transfer, maintain precise flow control, enable lubrication and hydraulic systems, facilitate fuel transfer, handle chemical processing, enable accurate metering and dosing, and support various industrial processes. Gear pumps offer reliability, versatility, and efficiency in handling a wide range of fluids, making them indispensable in numerous industrial sectors.

China Good quality Highly-Efficient Swl Worm Gear Screw Elevator for Energy-Saving Operations worm and wheel gearChina Good quality Highly-Efficient Swl Worm Gear Screw Elevator for Energy-Saving Operations worm and wheel gear
editor by CX 2024-01-02

Tags:

gear pump

As one of leading gear pump manufacturers, suppliers and exporters of mechanical products, We offer gear pump and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of gear pump

Recent Posts