China OEM CZPT Custom Large Module Gear Shaft Forging Herringbone Heat Treatment Shaft Roller Gear hypoid bevel gear

Product Description

LYMC Custom Large Module Gear Shaft Forging Herringbone Heat Treatment Shaft Roller Gear

A large gear shaft is a robust, cylindrical component with gears mounted on it, used to transmit rotational motion and power in machinery and mechanical systems. It plays a vital role in transferring power efficiently and is commonly found in various industrial applications. These shafts are typically made from durable materials like steel and come in different sizes and designs based on the specific application’s needs.
 

A gear shaft is a mechanical component used to transmit power between rotating parts. It consists of a cylindrical shaft with 1 or more gears mounted on it. The gears are designed to mesh with other gears or a rack to transmit torque and rotation to other parts of a machine or device.Gear shafts are used in a wide variety of applications, such as in automobiles, industrial machinery, and power generation equipment. They can be made from a range of materials, including steel, stainless steel, and titanium, and can be designed with different types of gears, such as spur gears, helical gears, bevel gears, and worm gears, depending on the specific application and requirements.

 

 

 

Product name

Spur Gear & Helical Gear & Gear Shaft

Materials Available

Stainless Steel, Carbon Steel, Brass, Bronze, Iron, Aluminum Alloy etc

Heat Treatment

Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……

Surface Treatment

Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering

BORE

Finished bore, Pilot Bore, Special request

Processing Method

Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc

Pressure Angle

20 Degree

Hardness

55- 60HRC

Size

Customer Drawings & ISO standard

Package

Wooden Case/Container and pallet, or made-to-order

Certificate

ISO9001:2008

Machining Process

Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping

Applications

Toy, Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment,
electronic sports equipment, , sanitation machinery, market/ hotel equipment supplies, etc.

Advantages

1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: SCM 415 steel
3. Bore: Finished bore
4. Precision grade: DIN 5 to DIN 7
5. Surface treatment: Carburizing and Quenching
6. Module: From 1 to 4
7. Tooth: From Z15 to Z70

Other Products:
 

Product Process:

Application:

Gear Products:

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing ,Gear and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery, Mining, Petroleum, Automatic, Excavator, Crane
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Toothed Portion Shape: Spur Gear
Material: Iron
Type: Non-Circular Gear
Customization:
Available

|

Customized Request

gear pump

What are the considerations for maintaining and servicing gear pumps?

Maintaining and servicing gear pumps is essential to ensure their optimal performance, longevity, and reliability. Here are some considerations for maintaining and servicing gear pumps:

1. Regular Inspection:

Perform regular visual inspections of the gear pump to check for any signs of wear, leakage, or damage. Inspect the gears, shafts, housing, seals, and any other components for wear, corrosion, or misalignment. Detecting and addressing potential issues early can prevent further damage and costly repairs.

2. Lubrication:

Proper lubrication is crucial for gear pumps to minimize friction, wear, and overheating. Follow the manufacturer’s recommendations for lubrication frequency and use the recommended lubricants. Ensure that lubricant levels are maintained within the specified range and monitor for any contamination or degradation of the lubricant.

3. Filter Maintenance:

Keep the system’s filters clean and replace them as required. Filters help prevent debris, contaminants, and particles from entering the gear pump and causing damage. Regularly inspect and clean or replace the filters to maintain proper fluid flow and prevent clogging.

4. Alignment and Clearance Adjustment:

Check and adjust the gear pump’s alignment and clearances as needed. Misalignment or excessive clearances can cause increased wear, reduced efficiency, and potential pump failure. Follow the manufacturer’s guidelines for proper alignment procedures and clearance adjustments.

5. Seal Replacement:

Monitor the condition of seals and gaskets, such as shaft seals and O-rings. Replace any worn or damaged seals to prevent fluid leaks and maintain proper pump performance. Use compatible seals that are designed for the specific fluid and operating conditions.

6. Scheduled Maintenance:

Adhere to a regular maintenance schedule for the gear pump. This may include activities such as cleaning, lubrication, inspection, and component replacement. Follow the manufacturer’s recommendations for the frequency and type of maintenance tasks required for the specific gear pump model.

7. Training and Expertise:

Ensure that personnel responsible for maintaining and servicing gear pumps have the necessary training and expertise. They should be familiar with the pump’s operation, maintenance procedures, and safety precautions. Proper training can help identify potential issues, perform maintenance tasks correctly, and ensure the safety of personnel and equipment.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including dates, tasks performed, and any observations or findings. This documentation can help track the pump’s maintenance history, identify recurring issues, and plan future maintenance tasks.

9. Manufacturer Guidelines:

Always refer to the manufacturer’s guidelines, instructions, and specifications for maintaining and servicing the gear pump. The manufacturer’s recommendations are specific to the pump model and can provide valuable guidance on maintenance intervals, required procedures, and any unique considerations.

In summary, maintaining and servicing gear pumps involves regular inspection, proper lubrication, filter maintenance, alignment and clearance adjustment, seal replacement, scheduled maintenance, training and expertise, documentation, and adherence to manufacturer guidelines. By following these considerations, gear pumps can remain in optimal condition, perform reliably, and have an extended service life.

gear pump

What is the significance of gear pump size and construction materials?

The size and construction materials of a gear pump play a significant role in its performance, durability, and suitability for specific applications. Here’s a detailed explanation:

1. Size:

The size of a gear pump refers to its physical dimensions, including the overall dimensions, shaft diameter, and gear dimensions. The size of a gear pump is important for the following reasons:

  • Flow Rate and Pressure: The size of the pump affects its flow rate and pressure capabilities. Larger gear pumps generally have higher flow rates and can handle higher pressures, while smaller gear pumps are suitable for lower flow rate and pressure requirements. Selecting the appropriate pump size ensures that it can meet the specific demands of the application.
  • Space Constraints: The physical size of the pump is crucial when space is limited. In compact installations or applications with restricted space, smaller gear pumps are preferred to optimize the use of available space.
  • System Integration: The size of the gear pump needs to align with the overall system design and integration. It should fit seamlessly into the system, considering factors such as mounting options, piping connections, and available space for maintenance and repairs.

2. Construction Materials:

The choice of construction materials for a gear pump is important for several reasons:

  • Chemical Compatibility: Different fluids have varying chemical properties, and certain fluids may be corrosive or reactive with certain materials. Selecting appropriate construction materials ensures compatibility with the fluid being pumped, preventing chemical reactions, degradation, or contamination of the fluid and the pump itself.
  • Mechanical Strength: Construction materials determine the mechanical strength and durability of the pump. The materials should be able to withstand the operating conditions, including pressure, temperature, and mechanical stresses, without deformation, fatigue, or failure. Common materials used for gear pump construction include cast iron, stainless steel, bronze, and specialized alloys.
  • Viscosity Handling: The construction materials can impact the pump’s ability to handle fluids with different viscosities. Some materials may have a lower resistance to wear or may experience higher friction with viscous fluids. The materials should be selected to ensure efficient operation and minimize the risk of pump damage or reduced performance when handling fluids of varying viscosities.
  • Hygienic Requirements: In industries such as food and pharmaceuticals, where strict hygienic standards must be maintained, gear pumps can be constructed using materials that comply with sanitary guidelines. These materials are easy to clean, resistant to contamination, and meet specific regulatory requirements.

3. Application Considerations:

When selecting the size and construction materials for a gear pump, it is important to consider the specific requirements of the application. Factors such as desired flow rates, pressure ranges, fluid properties, temperature conditions, and environmental factors should be taken into account. Proper sizing and material selection ensure that the gear pump can operate efficiently, reliably, and safely in the intended application.

In summary, the size and construction materials of a gear pump significantly impact its performance, durability, and suitability for specific applications. Proper sizing ensures that the pump can meet flow rate and pressure requirements, fit into the available space, and integrate well into the system. The choice of construction materials ensures chemical compatibility, mechanical strength, viscosity handling, and compliance with application-specific requirements. Considering these factors is crucial for selecting the right gear pump for optimal performance and longevity.

gear pump

What is a gear pump and how does it work in fluid systems?

A gear pump is a type of positive displacement pump used to transfer fluids in various industrial applications. Here’s a detailed explanation of how it works in fluid systems:

A gear pump consists of two or more meshing gears, typically cylindrical or helical in shape, enclosed within a housing or casing. The gears rotate within the casing, creating chambers between the gear teeth and the casing walls.

As the gears rotate, fluid enters the pump through an inlet port. The rotating gears trap the fluid in the gear teeth chambers and carry it around the outer periphery of the gears. The fluid is then forced through the outlet port as the gear teeth mesh and reduce the volume of the chambers.

The operation of a gear pump can be summarized in the following steps:

1. Inlet Phase:

Fluid enters the pump through the inlet port as the gears rotate. The expanding chambers between the gear teeth and the casing create a low-pressure zone, drawing fluid into the pump.

2. Meshing Phase:

As the gears continue to rotate, the gear teeth mesh, reducing the volume of the chambers. This meshing action traps the fluid within the gear teeth chambers.

3. Discharge Phase:

As the meshed gear teeth move towards the outlet port, the volume of the chambers decreases, causing the trapped fluid to be pushed towards the outlet. The increasing pressure forces the fluid out of the pump through the outlet port.

The continuous rotation of the gears creates a steady flow of fluid, making gear pumps suitable for applications requiring a constant and uniform flow rate.

There are a few key characteristics and considerations related to gear pumps:

1. Positive Displacement:

Gear pumps are positive displacement pumps, meaning they deliver a fixed volume of fluid for each revolution of the gears. This makes them suitable for applications that require precise flow control.

2. Viscosity Range:

Gear pumps can handle a wide range of fluid viscosities, from low-viscosity liquids to thicker fluids and even some non-lubricating liquids. However, the efficiency of gear pumps may decrease with higher viscosity fluids.

3. Pressure Limitations:

The pressure capabilities of gear pumps are typically limited compared to other pump types. High-pressure applications may require additional components, such as pressure relief valves, to protect the pump and the system.

4. Noise and Vibration:

Gear pumps can generate significant noise and vibration due to the meshing action of the gears. Proper design, material selection, and installation techniques can help mitigate these effects.

5. Material Compatibility:

The materials used for the gears, casing, and seals of the pump should be compatible with the fluid being pumped. This ensures proper functionality, longevity, and resistance to corrosion or chemical reactions.

Overall, gear pumps are widely used in fluid systems for applications such as hydraulic systems, lubrication systems, fuel transfer, chemical processing, and many others. Their simplicity, reliability, and ability to handle a range of fluid viscosities make them a popular choice in various industrial sectors.

China OEM CZPT Custom Large Module Gear Shaft Forging Herringbone Heat Treatment Shaft Roller Gear hypoid bevel gearChina OEM CZPT Custom Large Module Gear Shaft Forging Herringbone Heat Treatment Shaft Roller Gear hypoid bevel gear
editor by Dream 2024-05-15

Tags:

gear pump

As one of leading gear pump manufacturers, suppliers and exporters of mechanical products, We offer gear pump and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of gear pump

Recent Posts