China Standard Far-210 5 Axis Indexing Rotary Table Worm and Worm Gear CZPT Made hypoid bevel gear

Product Description

Item/Model UNIT FAR(s)-125/125B FAR(s)-170A FAR(s)-170/FAR(s)-170B FAR(s)-210
Table Diameter MM ø125 ø170 ø170 ø210
Diameter of Table Central Hole MM ø35H7 ø67 ø67 ø67
Inner Diameter of Mandrel Sleeve MM ø40H7 ø40H7 ø40H7
Diameter of Center Through Hole MM ø25 ø40 ø40 ø40
Table Height (Horizontal) MM 215 245 270 270
Table T-slot Width MM 12H7 12H7 12H7 12H7
Xihu (West Lake) Dis. Block Width MM 14h7 18h7 18h7 18h7
Axis Rotation Tilt(-30°~+120°) Rotation Tilt ±100º Rotation Tilt ±100º Rotation Tilt ±100º
Min. Increment deg. 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
InHangZhou Precision(while tilt 0°~+90°) sec. 40 60 *¹ 20 60 *¹ 20 60 *¹ 20 60 *¹
Repeatability sec. 6 8 6 8 6 8 6 8
Clamping System (Pneumatic) kgf/cm² 6 6 6 6 6 6 6 6 / Hyd.35 (optional)
Clamping Torque kgf·m 13 31 25 31 31 31 31 31 / Hyd.55
Servo Motor Model FANUC Taper/Straight shaft αis4/βis4 αiF4 / ßiS8 αiS4 / ßiS4 αiF4 / ßiS8 αiF4 / ßiS8 αiF8 / αiS12 / ßiS12 αiF4 / ßiS8 αiF8 / αiS12 / ßiS12
MITSUBISHI Taper/Straight shaft HG/HF-75/105 HG/HF-54/104  HG/HF-75/105 HG/HF-54/104 HG/HF-54/104 HG/HF-104 HG/HF-54/104 HG/HF-104
Speed Reduction Ratio 1:60 1:90 1:72 1:120 / CHINAMFG 1:90 1:90 1:90 1:90 1:90
Max. Rotation Rate of Table (Calculate with Fanuc α Motor) r.p.m 44.4 *(33.3) 44.4 *(33.3) 33.3 *(33.3) 33.3 *(16.6) 33.3 *(33.3) 33.3 *(16.6) 33.3 *(33.3) 33.3 *(16.6)
Allowable Inertia Load Capacity (Horizontal) kg.cm.sec² 0.97 2.2 2.7 4.13
Allowable Workpiece Load 0° Horizontal kg 50 60 75 75
0°~90°Tilt kg 35 40 50 50
Allowable Load(with Rotary Table Clamping) F kgf 400 600 750 750
FxL kgf·m 31 31 31 Pne.31 / Hyd.55
FxL kgf·m 13 25 31 31
Driving Torque(Rotary axis) kgf·m 9 *(3.7) 18 *(14.6) 18 *(14.6) 18 *(14.6)
Net Weight (servo motor excluded) kg 97/- 125 153 160

 

Item/Model Unit FAR(s)-100SN/FAR(s)-160SN(single-arm type)
Table Diameter mm Ø 100 / Ø 160
Diameter of Table Central Hole mm Ø 35H7x30 deep
Inner Diameter of Mandrel Sleeve mm _
Diameter of Center Through Hole mm Ø25
Table Height (Horizontal) mm 230
Table T-slot Width mm 12H7
Xihu (West Lake) Dis. Block Width mm 18h7
Axis Rotation Tilt ±110º
Min. Increment deg. 0.001 0.001
InHangZhou Precision sec. 40 60
Repeatability sec. 4 8
Clamping System (Hydraulic) kg/cm Pneumatic 5 Hydraulic 35
Clamping Torque kg-m 13 70
Servo Motor Model FANUC Straight Shaft αiS4 / ßiS4 αiF8 / ßiS8
MITSUBISHI Straight Shaft HF-KP43JW04-S6 / HG-56 HF / HG-154
Speed Reduction Ratio 1:60 1:120
Max. Rotation Rate of Table (Calculate with Fanuc α Motor) r.p.m 44.4(33.3) 16.6(11.1)
Allowable Inertia Load Capacity (Horizontal) kg.cm.sec 0.31(Ø100SN) / 0.8(Ø160SN)
Allowable Workpiece Load 0º Horizontal kg 25
0º~90º Tilt kg 20
Allowable Load(with Rotary Table Clamping) F kgf 600
FxL kgf.m 25
FxL kgf.m 13
Strength of worm gears (Rotary axis) kg.m 9(3.7)
Net Weight (servo motor excluded) kg 116

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Technical Support, Online Support
Warranty: 1 Year
Logo Printing: with Logo Printing
Size: Middle
Customized: Customized
Type: Base

gear pump

Can gear pumps be used in hydraulic systems?

Yes, gear pumps can be used in hydraulic systems. Here’s a detailed explanation:

1. Positive Displacement Operation:

Gear pumps operate on the principle of positive displacement, which makes them suitable for hydraulic applications. In hydraulic systems, a pump is required to deliver a consistent flow of fluid to actuate various components such as cylinders or motors. Gear pumps provide a steady and predictable flow rate, ensuring reliable operation of hydraulic systems.

2. Compact and Lightweight:

Gear pumps are often compact and lightweight compared to other types of hydraulic pumps. This makes them suitable for applications where space is limited or weight needs to be minimized. Gear pumps can be easily incorporated into hydraulic systems without adding excessive bulk or weight.

3. Cost-Effective:

Gear pumps are generally more cost-effective compared to other types of hydraulic pumps. They have a simple design with fewer components, which makes them easier to manufacture and maintain. This cost-effectiveness makes gear pumps a popular choice for a wide range of hydraulic applications.

4. Reliability:

Gear pumps are known for their reliability and durability. They have a robust construction with fewer moving parts, which reduces the chances of mechanical failure. Gear pumps can withstand high pressures and provide consistent performance over a long service life, making them well-suited for demanding hydraulic systems.

5. Viscosity Range:

Hydraulic systems may involve fluids with varying viscosities. Gear pumps are capable of handling a wide range of fluid viscosities, from low-viscosity hydraulic oils to more viscous fluids. The positive displacement action of gear pumps ensures a consistent flow rate regardless of the fluid viscosity, allowing them to adapt to different hydraulic fluid requirements.

6. Limitations:

While gear pumps offer several advantages, they also have some limitations in hydraulic systems. Gear pumps are generally not suitable for high-pressure applications where more precise flow control is required. They may produce higher levels of noise and have lower overall efficiency compared to some other types of hydraulic pumps.

In summary, gear pumps can be effectively used in hydraulic systems due to their positive displacement operation, compactness, cost-effectiveness, reliability, and ability to handle a range of fluid viscosities. However, for specific high-pressure or precision flow control requirements, alternative hydraulic pump technologies may be more suitable.

gear pump

Can gear pumps handle abrasive and corrosive fluids effectively?

Gear pumps are generally not the most suitable choice for handling abrasive and corrosive fluids effectively. Here’s a detailed explanation:

1. Abrasive Fluids:

Abrasive fluids contain solid particles that can cause wear and damage to pump components. Gear pumps have tight clearances between the gear teeth and the pump housing, and the presence of abrasive particles can lead to accelerated wear and reduced pump efficiency. The abrasive particles can cause erosion of the gears, housing, and other internal surfaces, leading to increased clearances and decreased pump performance over time. While gear pumps may be able to handle some mildly abrasive fluids, they are not designed for heavy-duty abrasive applications.

2. Corrosive Fluids:

Corrosive fluids can chemically attack and degrade the materials used in gear pumps. Many gear pumps are constructed using materials such as cast iron, stainless steel, or bronze, which offer good resistance to corrosion in a wide range of fluids. However, highly corrosive fluids, such as strong acids or alkalis, can still cause damage to these materials over time, leading to leaks, reduced performance, or even pump failure. In corrosive fluid applications, it is often necessary to use specialized materials or corrosion-resistant coatings to protect the pump components.

3. Alternative Options:

For handling abrasive and corrosive fluids effectively, alternative pump technologies are often preferred. Some options include:

  • Diaphragm Pumps: Diaphragm pumps use a flexible diaphragm to handle abrasive and corrosive fluids. The diaphragm separates the fluid from the pump components, protecting them from direct contact with the fluid.
  • Peristaltic Pumps: Peristaltic pumps use a flexible tube or hose to transport fluids. The fluid only comes into contact with the tube, which can be made from materials resistant to abrasion and corrosion.
  • Centrifugal Pumps: Centrifugal pumps are often used for abrasive and corrosive fluids. They rely on the centrifugal force generated by a rotating impeller to move the fluid, and they can be constructed with materials that withstand the corrosive effects of the fluid.
  • Progressive Cavity Pumps: Progressive cavity pumps use a rotating screw-like rotor inside a rubber stator to transfer fluids. The design allows for gentle handling of abrasive and corrosive fluids without significant wear or damage.

In summary, while gear pumps can handle some mildly abrasive fluids and certain corrosive fluids, they are not typically the most effective choice for handling highly abrasive or corrosive fluids. For such applications, alternative pump technologies that are specifically designed to handle abrasive or corrosive fluids should be considered to ensure optimal performance, longevity, and reliability.

gear pump

Can gear pumps be used for both high-pressure and low-pressure applications?

Yes, gear pumps can be used for both high-pressure and low-pressure applications. Here’s a detailed explanation:

1. High-Pressure Applications:

Gear pumps can be designed and configured to handle high-pressure fluid transfer. By adjusting various parameters such as gear size, tooth profile, operating speed, and material selection, gear pumps can generate the necessary pressure to meet the requirements of high-pressure applications. The close tolerance design and efficient sealing mechanisms of gear pumps contribute to their ability to handle high pressures without excessive leakage or loss of performance.

2. Low-Pressure Applications:

Similarly, gear pumps are also suitable for low-pressure applications. The positive displacement operation of gear pumps allows them to deliver a consistent flow rate even at low pressures. Gear pumps can efficiently handle low-viscosity fluids and transfer them with precision, making them suitable for applications that require accurate metering or low-pressure fluid circulation. Additionally, the compact size and simplicity of gear pump design make them convenient for low-pressure systems where space and simplicity are important considerations.

3. Pressure Control:

Gear pumps can incorporate pressure relief valves or bypass mechanisms to regulate and control the pressure within the system. These features allow gear pumps to adapt to varying pressure requirements and protect the pump from excessive pressure build-up. Pressure relief valves can be set to open and divert excess fluid when the system reaches a specified pressure, ensuring safe and reliable operation in both high-pressure and low-pressure scenarios.

4. System Integration:

Gear pumps can be integrated into different hydraulic or fluid systems to accommodate various pressure levels. They can be used as standalone pumps or as part of a larger system, working in conjunction with other components such as valves, filters, and control devices. The flexibility and versatility of gear pumps make them adaptable to a wide range of pressure requirements across different industrial applications.

5. Application Considerations:

When selecting a gear pump for a specific application, it’s essential to consider the desired pressure range, flow rate, viscosity, and other system requirements. Proper sizing, material selection, and configuration of the gear pump will ensure optimal performance and longevity in both high-pressure and low-pressure applications.

In summary, gear pumps can effectively handle both high-pressure and low-pressure fluid transfer applications. Their design versatility, pressure control options, and ability to integrate into various systems make gear pumps a reliable choice for a wide range of pressure requirements in different industries.

China Standard Far-210 5 Axis Indexing Rotary Table Worm and Worm Gear CZPT Made hypoid bevel gearChina Standard Far-210 5 Axis Indexing Rotary Table Worm and Worm Gear CZPT Made hypoid bevel gear
editor by CX 2024-03-28

Tags:

gear pump

As one of leading gear pump manufacturers, suppliers and exporters of mechanical products, We offer gear pump and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of gear pump

Recent Posts